Primary Care of Secondary Glaucomas

Primary Care of Secondary Glaucomas

DR. TAYLOR KISER
DR. REENA LEPINE

Angle Closure Glaucoma

Mechanism

Obstruction of the trabecular meshwork by the iris impairs aqueous outflow causing elevated IOP

- Primary Causes
 - Pupillary Block
 - Plateau Iris
- Secondary Causes
 - Contracting membranes
 - Space Occupying Lesions
 - Inflammatory precipitates

Spectrum of Angle Closure

Primary angle closure suspect
- Considered precursor to PAC and PACG
- It has been estimated that 22% of eyes with PACS progress to PAC/PACG over 5-10 years

Primary angle closure glaucoma
- Glaucomatous optic nerve
- Visual field defects

Onset

- Acute
 - Sudden and severe symptoms
- Intermittent
 - Repeated “sub-clinical” attacks
- Chronic
 - May be asymptomatic until advanced visual field loss develops

Risk Factors

Shallow central anterior chamber depth
- Short axial length
- Thinner/anteriorly positioned lens
- Female
- Increasing age
- Race
 - Inuit
- Eastern Asians
- Family history of AG

Primary Causes

- Pupillary Block
- Plateau Iris
- Contracting membranes
- Space Occupying Lesions
- Inflammatory precipitates
Tools for diagnosis

- Tonometry
- Pupil evaluation
- Angle evaluation
 - Van Herick technique
 - Gonioscopy
 - Anterior segment OCT
 - Ultrasound Biomicroscopy (UBM)
 - EyeCam

Gonioscopy in ACG

- Occludable angle (per Shields)
 - No trabecular meshwork in 180 degrees or more
- Gonioscopy technique
- Indentation Gonioscopy
 - Appositional vs. Synechial
 - Previous apposition?
- Factors influencing gonioscopy findings
 - Inadvertent pressure
 - Lighting conditions

Anterior segment OCT

- Excellent supplement to gonioscopy
- Provides a more objective measurement
- Good for documentation and for evaluation of angle evolution over time
- Two types of scans
 - Low Resolution vs. High Resolution

Low Resolution AS-OCT

- Objective measurements
 - Angle opening distance (AOD 500, AOD 750)
 - Trabecular iris angle (TIA)
 - Trabecular iris space area (TISA)
 - Trabecular iris contact length (TICL)

High Resolution AS-OCT

- Objective measurements
 - Angle opening distance (AOD 500, AOD 750)
 - Trabecular iris angle (TIA)
 - Trabecular iris space area (TISA)
 - Trabecular iris contact length (TICL)

Precipitating Factors

- Mydriasis
 - Dim illumination
- Emotional stress
- Medications
Treatment
Primary angle closure suspect
Acute Angle Closure
Intermittent Angle Closure
Chronic Angle Closure

Pseudoexfoliation Syndrome
Pseudoexfoliation Glaucoma

Introduction
History
* First described in 1917 in Finland

Pseudoexfoliation Syndrome (PEX)
* Condition characterized by abnormal production and deposition of fibrillar extracellular material within the eye

Pseudoexfoliation Glaucoma (PXG)
* PEX with secondary open angle glaucoma

Pseudoexfoliation Syndrome
Systemic condition
* Heart, lung, kidney, gall bladder, liver, cerebral meninges
* Associated with cardiovascular and cerebrovascular diseases
* Systemic PEX has never been diagnosed without intraocular signs

Pseudoexfoliation Syndrome
Demographics
Females > Males
* Males more common to develop PXG
Incidence increases with age
* Rarely found: <50 year
* Highest prevalence: >70 years
Common in Scandinavia
In the US: 5-15% prevalence rate

Pseudoexfoliation Syndrome
Pathogenesis
Not fully understood

Aging epithelial cells
* Abnormalities of the basement membrane metabolism
* Production and accumulation of abnormal fibrillar extracellular material
Pseudoexfoliation Syndrome

Ocular Manifestations
- **Produced:**
 - Equatorial lens capsule
 - Iris
 - Ciliary body
 - Trabecular meshwork

- **Deposited:**
 - Anterior lens capsule
 - Zonules
 - Ciliary body
 - Iris
 - Trabecular meshwork
 - Anterior vitreous face

Clinical Features
Lens
- Anterior capsule PEX material accumulation
- Central disk (1mm to 2.5 mm in diameter)
- Clear Middle Zone
- Due to contact between the iris and lens during pupil function
- Granular peripheral zone
- Observed in dilation

Ciliary Body/Zonules
- PEX material accumulation

Complications
- Cataract formation
- Phacodonesis
- Lens subluxation
- Angle-closure glaucoma

Clinical Findings
Iris
- Pupillary margin deposits
- Peripapillary and iris sphincter atrophy
- Transillumination defects (“Moth-eaten”)
- Stromal deposits

Complications
- Pigment dispersion
- Iris rigidity
- Poor mydriasis
- Posterior synechiae

Cataract Surgery Complications
Surgical complications
- Corneal endotheliopathy
- Poor mydriasis
- Zonular instability
- Lens subluxation

Postoperative complications
- Increase inflammation
- IOP elevation
- Late IOL decentration/prolapse

Clinical Findings
Anterior Chamber
- Mild flare (pseudouveitis)
- Due to iris blood-aqueous barrier breakdown

Cornea
- Atypical corneal guttae
- PEX material on the endothelium
- Diffuse pigment deposition
- May form a Krukenberg spindle

Complication
- Endothelial decompensation
Pseudoexfoliation Syndrome

Clinical Findings

Gonioscopy
- Pigment deposition
- Most marked inferiorly
- Patchy distribution
- Sampaolesi line
- Increased pigmentation has been correlated with increased IOP
- PEX material deposition
 - “Dandruff-like”

Complication
- IOP elevation
- OHT or Open Angle Glaucoma

Mechanism of IOP Increase

Open-Angle Mechanism
- Increase outflow resistance of the trabecular meshwork
- Melanin and PEX material blockage
- Disorganization of the canal structure
- Rapid pigment release
- IOP spikes

Closed-angle Mechanism
- Pupillary block
 - Posterior synechiae, iris rigidity, zonular weakness

Pseudoexfoliation Glaucoma Risk

Cumulative Risk
- 5% at 5 years
- 15% at 10 years

High Risk
- Unilateral PXG and PEX in the fellow eye
 - 50% at 5 years

Low Risk
- Unilateral PXG and no clinical PEX in the fellow eye

Pseudoexfoliation Glaucoma

Usually diagnosed in the 7th decade
- Higher mean IOP
- More advanced visual field defects

Unilateral, open-angle glaucoma
- Most common form of secondary open-angle glaucoma

More aggressive compared to POAG
- More treatment failures
- Higher incidence of progression
- More advanced visual field defects

Pseudoexfoliation Glaucoma

IOP Measurements
- Compared to POAG
 - Higher mean IOP levels
 - Marked IOP spikes
 - May occur after pupil dilation
 - May peak 2 to 3 hours after dilation
 - Takes 10 to 15 hours to return to normal IOP levels
Pseudoexfoliation Glaucoma

IOP Measurement
- Compared to POAG
 - Greater diurnal fluctuations
 - May exhibit a diurnal range greater than 15 mmHg
 - 45% of PXG patients have IOP peaks outside of office hours

Pseudoexfoliation Glaucoma Management
- Increase difficulty to manage compared to POAG
 - Higher rates of surgical treatment
 - 87.8% of PXF patients needed a trabeculectomy

- First line therapy
 - Medical
 - Laser

Pseudoexfoliation Glaucoma Management

Medical
- Same as POAG
 - Initial treatment: Prostaglandins
 - Combination therapy usually needed
 - Pilocarpine is not recommended

Laser Trabeculoplasty
- Argon Laser Trabeculoplasty (ALT)
 - Greater percentage decrease in IOP than POAG patients
 - Due to trabecular hyperpigmentation
 - Within 3 years, nearly 50% of patients are back to baseline IOPs
- Selective Laser Trabeculoplasty (SLT)
 - Effective in IOP reduction
 - Effects may not last as long compared to POAG
- Complication
 - Postlaser IOP spike

Uveitic Glaucoma

- Trabeculectomy
- Surgical outcomes not statistically different compared to POAG
- Cataract/Trabeculectomy
Prevalence

- 2 million people worldwide
- 10% of those patients will be blinded by it
- Retinal damage
- Secondary Glaucoma
- 20-40% of uveitis patients develop glaucoma

Demographics

- No race, sex, or age predilection for those that develop glaucoma
- Dependent on type of uveitis
 - Fuchs' heterochromic iridocyclitis
 - Posner Schlossman syndrome
 - Herpetic uveitis
 - Juvenile idiopathic arthritis
- Chronic>Acute
- Children>Adults

Pathogenesis of Uveitic Glaucoma

- Blockage of TM
 - Inflammatory cells, proteins, debris, or fibrin
- Posterior synechiae
- Peripheral anterior synechiae
- Ciliary body inflammation
- In chronic cases, trabecular meshwork scarring may occur

Relation to systemic health

- An underlying etiology is found in ~40% of patients
 - Infectious
 - Herpetic keratouveitis
 - Sarcoidosis
 - Congenital Rubella
 - AIDS
 - Hansen disease (Lepromatous Leprosy)
 - Disseminated meningococcal infection
 - Hemmorhagic fever with renal syndrome
 - Listeria monocytogenes
 - Inflammatory
 - Juvenile idiopathic arthritis
 - Ankylosing spondylitis
 - Reiter's syndrome
 - Bechet's disease
 - Rheumatoid arthritis
 - Systemic Lupus Erythematosus
 - Idiopathic

Symptoms

- Photophobia
- Redness
- Brow Ache
- Ocular pain
- Blurred vision
- Colored haloes
- Nausea

Signs

- Cell
- Flare
- Keratic precipitates
- Band keratopathy (with chronicity)
- Epithelial dendrites
- Stromal scarring
- Iris atrophy
- Cystoid macular edema
- Band keratopathy
- Cataract
- Iris nodules
- Posterior Synechiae
- Angle/Iris neovascularization
- Optic nerve damage
- Cystoid macular edema
- Retinitis
- Perivascular sheathing
- Choroidal infiltration
Medical Management of Uveitic Glaucoma

1. Treatment of the underlying systemic disease
2. Control of inflammation
3. Control of IOP
 - IOP lowering medications
 - Topical: CAI's, beta-blockers, alpha-agonists, and prostaglandins
 - Oral: CAI's and Hyperosmotics

Surgical Management

Required in approximately 40% of adult patients and 60% of adolescent patients.

Laser Iridotomy:
- High safety profile
- ~50% in first 20 days
- Surgical iridectomy is the next step.

Laser trabeculoplasty:
- ALT
 - No change
 - Introduces more inflammation than SLT
- SLT
 - 19.8% decreased of IOP after 1 year
 - No increase in flare up of inflammation

Trabeculectomy

Glaucoma drainage device implantation

Cyclodestructive procedures:
- Transscular diode laser cyclophotocoagulation (TDCP) is relatively safe for refractory glaucoma
 - Adults
 - Higher success rate in adults
- Compared to GDD it has similar success rate but higher rate of visually threatening complications
- Children
 - Lower success rate
 - Retreatment often needed
 - Lower rate of visually threatening complications

Posner-Schlossman Syndrome

Introduction

Glaucematoocyclitic Crisis or PSS

History
- First described in 1948 by Posner and Schlossman

Characteristics
- Recurrent attacks
- Mild, nongranulomatous uveitis
- Markedly increased IOP during attacks
- Acute attacks resolve spontaneously within hours to weeks

Epidemiology

Unilateral
- 50% have a bilateral involvement at different times

Young adults
- 20 to 50 years old
- Males > Females
Etiology
Unknown Cause
Infectious and Non-infectious Theories

Infectious Etiology Theories
Cytomegalovirus (CMV)
Helicobacter pylori
Varicella Zoster Virus (VZV)
Herpes Simplex Virus (HSV)

Non-infectious Etiology Theories
Autonomic Dysregulation
Ciliary Vascular Abnormalities
Genetic Factor
* HLA-Bw54

Possible Mechanism of IOP Elevation
During attacks: Prostaglandin levels increase
* Trabeculitis
* Prostaglandins mediate inflammation within the trabecular meshwork
* Aqueous Production Elevation
* Prostaglandin E increases aqueous production

Posner-Schlossman Syndrome
Clinical Findings
Symptoms
* Unilateral blurred vision
* Mild discomfort/pain
* Halos/Rainbows around lights
* History of prior events

Visual Acuity
* Mild decrease
* Can be severe

Pupils
* Slightly dilated
* Sluggish
Posner-Schlossman Syndrome

Clinical Findings

Conjunctiva
- Mild injection

Cornea
- Microcystic edema
- Inferior, fine, and white keratic precipitates

Anterior Chamber
- Mild cells and flare

Iris
- Heterochromia or atrophy

Tonometry
- Increased IOP
- Greater than 30 mmHg
- Usually between 40 to 60 mmHg
- IOP elevation usually precedes the anterior chamber reaction

Gonioscopy
- Open angle without synechiae
- May observe keratic precipitates

Posterior Segment
- Possible vasculitis and snowbanking

Optic Nerve Head
- Healthy rim tissue
- ONH studies during an attack
- Decrease volume/area to the rim
- Increase volume/area to the cup
- Decrease to the RNFL area
- Blood flow reduction
- Neuroretinal rim
- Peripapillary nasal and temporal sectors

Open-Angle Glaucoma

Diagnosis Risk

Glaucoma diagnosis: 45% of PSS patients

Over time: Develop ONH damage and visual field defects

Greatest risk factor
- Duration of PSS
- Risk of glaucoma after 10 or more years with PSS is 2.8 times higher than PSS patients diagnosed less than 10 years
Acute Attack Management

Goal: Control Inflammation and IOP Elevation

Medical
- Anti-inflammatory
 - Topical Corticosteroid
- Anti-inflammatory
 - Topical/Oral Non-steroidal anti-inflammatory (NSAID)
 - Steroid-response patients
 - Topical NSAID
 - Oral NSAID
 - Indomethacin
 - Prostaglandin antagonist

Antiglaucoma
- In-office treatment
 - Systemic carbonic anhydrase inhibitor
 - Acetazolamide 250mg
 - Apraclonidine
 - 1% shown to reduce IOP by 50.3% four hours after instillation

Medical
- Antiglaucoma
 - Topical Beta-Blockers
 - Timolol 0.5%
 - Topical Alpha-Adrenergic Agonist
 - Brimonidine 0.1% to 0.2%
 - Topical Carbonic Anhydrase Inhibitors
 - Dorzolamide 2%

Cycloplegic agent
- Homatropine 5%

Procedure
- Anterior chamber paracentesis
- IOP is considered dangerously high

Follow-Up
- Start: Every few days
 - IOP is elevated
- Then: Weekly
 - Attack has resolved
 - Steroids are tapered
Between Attack Management

- Anti-inflammatory and antiglaucoma medication
 - Not necessary
 - No frequency of attack reduction

- Self medicate
 - Well informed patients
 - Topical NSAID and antiglaucoma drops

- Follow-Up
 - Monitored as if they were diagnosed with POAG

Antiviral Therapy Studies

- Studies testing:
 - Systemic ganciclovir
 - Topical ganciclovir
 - Intravitreal ganciclovir
 - Intraocular ganciclovir

Results

- Systemic therapy: 91% responded to treatment
- Topical therapy: 64% responded to treatment
- Recurrence Rate
 - Topical therapy: 57%
 - Systemic therapy: 80%

Surgical Management

- Used with uncontrolled IOP

- Trabeculectomy with antimetabolites
 - Successful in preventing IOP spikes during attacks
 - May not require antiglaucoma drops after surgery
 - Filtering bleb may filter out some inflammatory cells

Introduction

- Traumatic glaucoma occurs when visual field loss and glaucomatous optic neuropathy occur secondary to elevated IOP after ocular trauma
Types of Trauma

- Blunt ocular trauma
- Penetrating Injury
- Open vs. closed globe
- Retained foreign body
- Chemical or Thermal Burns
- Radiation exposure

Demographics

- 85% Males
- 75% Younger than 30 years old
- Sporting and domestic injury accounted for almost 2/3 of these injuries
- Ball games most common
- Boxing is extremely high risk
- Other causes
 - industrial accidents
 - malicious acts
 - air bag inflation

Pathophysiology

When blunt trauma occurs, a change in the shape of the globe occurs from compression

- Anterior/posterior shortening
- Equatorial elongation

The lens-iris diaphragm is forced posteriorly
Their attachments are moving outward, producing a shearing force.

- [Video 1](http://www.youtube.com/watch?v=XjwO9InuFJk)
- [Video 2](http://www.youtube.com/watch?v=aGsntCznhcY)

Findings associated with trauma

- Pupil damage
- Angle recession
- Iridodialysis
- Cylodialysis
- Iridoschisis
- Cataract
- Trabecular Meshwork tear
- Hyphema
- Corneal edema
- Iritis
- Chorioretinal trauma
- Dislocated lens

Angle recession glaucoma

4-9% of those with more than 180 degrees of angle recession will eventually develop a chronic glaucoma called angle recession glaucoma:

- Misnomer
- Variable onset

Risk of development and POAG

Clinical exam

- History
- Tonometry
- Gonioscopy
 - Broad ciliary band
 - Localized depression of the iris
 - Torn iris processes
 - Abnormally white scleral spur
- Health exam
- Optic nerve assessment
Medical Management of ARG

- Medications that reduce aqueous production (preferred)
 - Beta-blockers
 - Carbonic anhydrase inhibitors
 - Alpha-2 Agonists
- Prostaglandin analogs
 - Increase uveoscleral outflow
 - Bypass trabecular meshwork damage
- Miotics
 - Should be avoided!

Surgical management of ARG

- Laser trabeculoplasty may be attempted
 - Does not have a high success rate
- ND:YAG laser trabeculopuncture
 - Variable success
- Filtration surgery
 - Lower success rate than with POAG
 - Antimetabolites improve success
- Cyclodestructive procedure

Ghost cell glaucoma

- Occurs after vitreous hemorrhage
- Onset 1-3 weeks post-injury
- Degenerated red blood cells (ghost cells) obstruct aqueous outflow
- Khaki colored cells in AC
- “Candy Stripe” sign

Treatment:
- Medical therapy helps but often is insufficient
- Surgical therapy involves vitrectomy and anterior chamber lavage

Hemolytic Glaucoma

- Similar to “Ghost Cell Glaucoma”
- Occurs several days to weeks after an intraocular hemorrhage
- Trabecular meshwork occluded!
 - Hemoglobin filled macrophages
 - Free hemoglobin
 - Remnants of lysed red blood cells
 - RBCs stain in AC
- Reddish-brown hue to TM on gonioscopy

Treatment:
- Often self-limiting, medical therapy should be attempted first!
 - Anterior chamber lavage and possibly vitrectomy may be indicated

Hemosiderotic Glaucoma

- Rare condition
- Associated with prolonged history of intraocular bleeding
- As blood components break down they may produce toxic granules of inorganic iron
- Sclerosis and obliteration of intratrabecular spaces may occur!

Lens related glaucoma

- Pupillary block with subsequent angle closure:
 - Injury to the zonules may cause an anterior displacement of the lens
- Phacomorphic
 - Disruption of the Lens capsule during trauma may cause rapid swelling of the lens with angle closure
- Lens particle glaucoma
 - Disruption of lens capsule during trauma releases particles into the AC clogging the TM
 - A fine glistening may be seen in the angle
 - Chronic inflammation
Wrap up for traumatic glaucoma

Acute management
- Initial injury repair or treatment
- IOP monitoring and control
- Inflammation

Chronic management
- Varies based on initial insult
- Angle Recession
- Long term IOP monitoring
- Patient education

Pigment Dispersion Syndrome

Pigmentary Glaucoma

Introduction

History
- First pigmentary glaucoma case described in 1940

Pigment Dispersion Syndrome (PDS)
- Condition characterized by dispersion of iris pigment throughout the eye

Pigmentary Ocular Hypertension (POH)
- PDS with elevated IOP and no glaucomatous optic neuropathy

Pigmentary Glaucoma (PG)
- PDS with glaucomatous optic neuropathy

PDS/PD Demographics

<table>
<thead>
<tr>
<th>Pigment Dispersion Syndrome</th>
<th>Pigmentary Glaucoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young (20-40 years)</td>
<td>Young (30-50 years)</td>
</tr>
<tr>
<td>Myopic</td>
<td>Myopic</td>
</tr>
<tr>
<td>Women = Men</td>
<td>Men (78-93% are males)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>2.5% prevalence in the US</td>
</tr>
</tbody>
</table>

PDS Pathogenesis

Possibly genetic
- Autosomal dominant

Reverse-Pupillary Block
- Higher pressure in the AC than the PC
- Posterior bowing of the peripheral iris
- Friction between the posterior iris and zonular bundles
- Initiated by accommodation, blinking, eye movements, exercise

Pigment Dispersion Syndrome

Clinical Features

Cornea
- Krukenberg Spindle
- Pigment deposits on the corneal endothelium
- Vertical spindle-shaped pattern
- Caused by aqueous convection currents
- More common in women
Pigment Dispersion Syndrome
Clinical Features

Cornea
- Endotheliopathy
- Pleomorphism (abnormal shape)
- Polymegathism (abnormal size)
- Normal endothelial cell counts and corneal thickness

Anterior Chamber
- Depth
 - Deeper compared to POAG patients
 - Male AC depth > Female AC depth
- Pigment Showers
 - Circulating AC pigment
 - Mistaken for uveitic inflammatory cells

Iris
- Transillumination Defects
 - Presents in 80% of cases
 - More obvious in light colored eyes
 - Mid-peripheral iris
 - Spoke-like pattern
- Partial loss of pupillary frill
- Pigmentation
 - Pigment deposits on the anterior surface
 - Asymmetric cases
 - Darker iris: More affected

Pupils
- Anisocoria
 - Larger pupil observed in the eye with the greater iris transillumination defects
 - Mechanical irritation of smooth muscle cells

Gonioscopy
- Open angle
- Increased pigmentation
 - Trabecular meshwork
 - Schwalbe's line
- More prominent inferiorly
- Backward-bowing of the iris
- Greater number of iris processes
Pigment Dispersion Syndrome
Clinical Features

- Lens and Zonules
 - Pigment deposition
 - Anterior capsule
 - Posterior capsule
 - Scheie's stripe: Pigment accumulation at the insertion of the zonules into the posterior lens capsule

- Posterior Segment
 - Lattice degeneration (20-33%)
 - Retinal breaks (12%)
 - Retinal detachments (5.5-6.6%)

Mechanism of IOP Increase

- Reduced aqueous outflow due to pigment obstruction
- Destruction of the trabecular meshwork
 - Due to loss of the trabecular meshwork cells

Risk of Developing Pigmentary Glaucoma

- 10% at 5 years
- 15% at 15 years
- Mean age of diagnosis: 42 years
- Most significant risk factor: IOP >21 mmHg

Risk Factors for Developing Pigmentary Glaucoma

- Glaucoma Family History
 - 4.21% of PDS patients
 - 26-48% of PG patients
 - Family members do not all have PG

- Gender
 - Men > Women
 - 78-93% of cases are men
 - Men: 34-46 years
 - Women: 43-53 years
 - More aggressive in men
Risk Factors for Developing Pigmentary Glaucoma

Refraction
- 38-100% of PDS patients are myopic (> -1.00D)
- Degree of myopia is greater
 - More myopic eyes tend to have a deeper AC allowing more contact between the iris and the zonules

Krukenberg Spindle
- More common in PG eyes
- Develop in eyes with a greater degree of pigment dispersion

Initial IOP
- Most important factor for developing PG
- Risk increase if IOP at initial diagnosis is >21 mmHg

Pupil Dilation
- Increase IOP by inducing a pigment shower
- Following 10% phenylephrine use: No greater than a 2 mmHg elevation observed

Exercise
- Increases the posterior iris concavity
- Induces pigment dispersion
- Prevention
 - Laser iridotomy
 - Pilocarpine
- No studies have shown a ≥5 mmHg IOP increase

Accommodation
- Induces anterior lens movement
- Decreasing the AC depth thus increasing the AC pressure
- Results in posterior bowing of the iris
Risk Factors for Developing Pigmentary Glaucoma

Blinking
- Pumps aqueous from the posterior chamber to the anterior chamber
- Increases anterior chamber pressure
- Results in posterior bowing of the iris

Pigmentary Glaucoma

Symptoms
- Majority is asymptomatic
- Headaches and blurred vision after exercise
- Haloes around lights

Pigmentary Glaucoma Clinical Findings

IOP
- Mean of 29 mmHg at diagnosis
- 25% of PG patients had an IOP >31 mmHg at diagnosis
- 12.5% of PG patients had an IOP >39 mmHg at diagnosis
- In a 25 year review, IOP ranged 24-56 mmHg at diagnosis

Visual Field Defects
- 28-44% progression in 11-17 years

Optic Disc Cupping
- No difference compared to POAG

Degree of Pigmentation
- In asymmetric cases
 - Severe eye will have a greater degree of pigment dispersion
 - Degree of trabecular meshwork pigmentation correlates with severity

Filtration Bleb
- Pigmentation has been observed within the filtering bleb
- Unknown if this affects the trabeculectomy function

Retinal Detachment
- Slightly higher (7.6-10%) compared to PDS
Pigmentary Glaucoma Burn-Out Phase

Occurs with advancing age
Reduction in pigment dispersion and IOP normalization
* Observed over a 10 year period
Inferior angle pigmentation clears before the superior angle

Management of PDS/PG

Depends on the Disease State

* Inactive pigment dispersion with stable IOP
 * PDS patients and burn-out PG
* Active pigment dispersion with stable IOP
 * PDS and PG patients with sufficient aqueous outflow facility

Medical Therapy
* Pilocarpine
 * Prevents
* Pupil dilation
 * Inhibits exercise-induced IOP elevation
 * Reverses iris bowing
* Side effects
 * Increase risk of retinal detachment
 * Accommodative spasm
 * Cataract formation

Pigmentary Glaucoma Management

Medical Therapy
* Beta-Blockers
* Carbonic Anhydrase Inhibitors
* Alpha-Adrenergic Agonists
* Prostaglandins
 * Uveoscleral outflow
 * No pigment dispersion increase

Theories
* Increasing axial length of the lens
* Age-related miosis
* Absent of pigment left in the posterior pigment epithelium
* Ciliary body shut down
* Accommodation

Management of PDS/PG

Depends on the Disease State

* Active pigment dispersion with progressive glaucoma and elevated IOP
 * PG patients
* Inactive pigment dispersion with progressive glaucoma and normal/elevated IOP
 * PG patients with poor aqueous outflow facility
Pigmentary Glaucoma Management

Laser Therapy
- Laser Trabeculoplasty
 - Argon Laser Trabeculoplasty
 - Effective due to greater energy absorption by the pigmented TM
 - More effective in younger patients
 - Effect diminishes with time: Success rate of 45% at 6 years
 - Selective Laser Trabeculoplasty

Laser Iridotomy
- Flattens the iris, reversing posterior iris bowing
- More effective in patients <40 years old
- Useful only in patients with active stages

Trabeculectomy
- Most effective treatment for PG compared to medical therapy
- Higher percentage require surgery compared to POAG
- Men tend to require it sooner